您现在的位置: 查字典公务员网 >考研 >备考资料 >考研数学 >考研数学:线性代数知识框架构建之二
北京 上海 山东 江苏 浙江 安徽 吉林 福建 广东 广西 海南 天津 河北 黑龙江 山西 甘肃 湖北 湖南 河南 四川 重庆 云南 贵州 西藏 宁夏 新疆 青海 陕西 辽宁 江西 内蒙古

考研数学:线性代数知识框架构建之二

2014-11-10 | 网络

在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。

数域上的n元有序数组称为n维向量。设向量a=(a1,a2,...,an),称ai是a的第i个分量。

n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。

矩阵与向量通过行向量组和列向量组相联系。

对给定的向量组,可以定义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。

利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。

从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。

通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。

从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。

部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。

回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ..., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。

任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。

【考研数学:线性代数知识框架构建之二】相关文章:

公考法律知识专题之婚姻法

2017省考行测数学运算解题需多个知识点综合应用

广西政法干警申论热点:理性爱国

2017省考行测技巧:比较构造法解数量关系题

公考法律知识专题之法理学真题练习

事件现象性热点:名人代言虚假广告亟需规范

公考法律知识专题之公务员法(二)

公考法律知识专题之宪法(三)

公考法律知识专题之宪法(二)

公考法律知识专题之法理学(一)

推荐栏目阅读 考研 备考资料 考研数学
网友关注
网友关注视频

行测 申论 面试

考试技巧

精彩在线