您现在的位置: 查字典公务员网 >考研 >备考资料 >考研数学 >2017考研:线代复习的三个重点章节指导
北京 上海 山东 江苏 浙江 安徽 吉林 福建 广东 广西 海南 天津 河北 黑龙江 山西 甘肃 湖北 湖南 河南 四川 重庆 云南 贵州 西藏 宁夏 新疆 青海 陕西 辽宁 江西 内蒙古

2017考研:线代复习的三个重点章节指导

2016-01-28 | 网络

线代考点中的行列式、矩阵、向量是学习整个线代部分的基础,基础打好了,才会更有效的把握整体。因此在复习初期,考生们一定要对这三个章节多加重视,夯实基础,稳扎稳打。

(1)行列式:行列式这个章节的核心考点主要分为两大块,一是行列式的计算,二是行列式的应用。行列式计算的主要方法有:第一,利用行列式的相关性质化行列式为上三角或下三角来进行计算;第二,利用行列式的行展开或列展开定理来进行计算;第三,利用特殊行列式来进行计算,如范德蒙行列式,行(列)和相等行列式,广义对角行列式等等,第四,利用特征值来计算行列式。

行列式的应用主要体现在利用克莱姆法则判断方程组解的情况以及如何求解整个方程组,在判断方程组解的情况时只要方程组满足是方形的也就是方程组的个数和未知数的个数相等时往往利用克莱姆法则来判断解的情况来的更快,更简捷。总之,行列式这个章节整体的落脚点还是在行列式的计算上,在后面章节中求解特征值时都要用到行列式的相关计算。同学们在复习这个章节的时候一定要多练习,多做习题,特别是具有特殊形式的行列式的计算常用的解题方法和技巧一定要熟记于心,比如说行(列)和相等行列式,处理方法一般都是将其他各行(或各列)都加到第一行(或第一列)上去,然后再做处理。针对于行列式这个章节,做到多练,多练!

(2)矩阵:矩阵可以说是贯穿整个线代部分的一条基线,矩阵有对应的方阵行列式,矩阵有对应线性方程组的系数矩阵,矩阵有对应的行向量、列向量形式,矩阵有对应的二次型矩阵等等。矩阵这个章节是学好整个线代部分的基础,同样也是后面章节所常用的一种工具,当然也是整个线代部分的重点所在。

矩阵这个章节的核心考点主要有:第一,矩阵的运算,包括线性运算(矩阵加法,数乘)、矩阵乘法;第二,矩阵的求逆,求逆的方法主要包括:定义法、伴随矩阵法、初等变换法、分块矩阵法;第三,分块矩阵,其中分块矩阵所对应的分块行列式的计算是分块矩阵的重点所在,拉普拉斯展开定理的几个常用的分块行列式的计算公式一定得掌握;第四,矩阵的秩,矩阵秩的求解方法以及秩的相关不等式性质,这个是考研的常考点,也是必考点!这个章节复习的时候,需要注意的就是在进行矩阵的运算时一定要非常小心、细心,特别是在对矩阵作初等变换时一步错就步步错,总之这个章节同学们在做题时一定要做到细心,细心!

(3)向量:向量其实它的本质也就是特殊的矩阵,这个章节的核心考点主要包括:线性相关性的判定、极大无关组的求法、向量组秩的相关性质、施密特正交法。相关性的判定要掌握定义法、以及线性相关的几个充要条件,掌握利用化行阶梯型求解极大无关组,掌握向量组秩的求法,要会利用施密特正交法把已知的向量组标准正交化。

数学成绩是长期积累的结果,因此准备时间一定要充分。首先对各个知识点做深入细致的分析,注意抓考点和重点题型,同时逐步进行一些训练,积累解题思路,这有利于知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。查字典公务员考研特为广大学子推出2017考研OL乐学、全年集训、精品网课系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。同时,查字典公务员考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!

精彩文章推荐

2017考研数学复习规划之时间篇 2017考研数学复习规划之教材选择篇 2017考研数学复习规划之学习方法篇
2017考研数学:数一、二、三的异同 2017考研数学复习指导:以基础为本 2017考研:文科生如何攻破数学难关
2017考研高数复习十个易混点辨析 2017考研数学:21种思维定势帮助你 2017考研数学:注意知识点间的联系

更多精彩内容尽在

【2017考研:线代复习的三个重点章节指导】相关文章:

2017省考行测技巧:理性取舍数量关系

申论备考:文章开头三种写法

2017公务员考试行测技巧:画图法解直线上多次相遇问题

2017陕西公务员考试申论:让无处不在的排比句为文章添彩

2017陕西公务员考试申论:如何写出精彩的文章开头

2017国家公务员考试:哪些人可以报考公务员?

2017公务员考试行测难点解析:多次相遇问题

申论热点:建设社会主义核心价值体系的意义

2017省考行测:走进你不知道的幻方

2017国考报考须知:行测和申论满分各是多少?

推荐栏目阅读 考研 备考资料 考研数学
网友关注
网友关注视频

行测 申论 面试

考试技巧

精彩在线