2017年高等数学复习,对定理的掌握一定要熟练,系统化,查字典公务员考研整理了高等数学重要的定理,17年考生在复习的时候一定要扎实掌握以下几个:
1、函数的有界性
在定义域内有f(x)K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、函数的单调性、奇偶性、周期性
3、数列的极限
定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。
如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
4、函数的极限
函数极限的定义中0|x-x0|表示xx0,所以xx0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(xx0)时f(x)=A,而且A0(或A0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)0(或f(x)0),反之也成立。
函数f(x)当xx0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(xx0)f(x)=,则直线x=x0是函数y=f(x)图形的铅直渐近线。
5、极限运算法则
有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;
如果F1(x)F2(x),而limF1(x)=a,limF2(x)=b,那么ab。
6、极限存在准则
两个重要极限lim(x0)(sinx/x)=1;lim(x)(1+1/x)x=1。
夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:ynzn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
单调有界数列必有极限。
7、函数的连续性
设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当xx0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(xx0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(xx0)f(x)不存在;3、虽在x=x0有定义且lim(xx0)f(x)存在,但lim(xx0)f(x)f(x0)时则称函数在x0处不连续或间断。
如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。
有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。
如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),xIx}上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。
定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。
定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即mM。
定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)f(b)0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点
定理(介值定理)设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的值f(a)=A,f(b)=B,那么对于A与B之间的任一数C,在开区间(a,b)内至少有一点使f()=C,(a
推论:在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值
数学成绩是长期积累的结果,因此准备时间一定要充分。首先对各个知识点做深入细致的分析,注意抓考点和重点题型,同时逐步进行一些训练,积累解题思路,这有利于知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。查字典公务员考研特为广大学子推出2017考研OL乐学、全年集训、精品网课系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。同时,查字典公务员考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!