王镜岩生物化学是考取生化方向研究生同学们的基础教材,在前期复习中同学们应该已经将书通读一遍,由于书中内容较多,建议同学们冲刺阶段的复习,以精炼的笔记为主,下面就由查字典公务员考研带着大家复习一遍此书的重点内容。
第八章 核苷酸代谢
第二节 核苷酸的生物合成
一、合成的基本途径
1.有从头合成和补救合成两条基本途径。从头合成是由简单的前体分子(如氨基酸、CO2、NH3、戊糖磷酸)经过较复杂的酶促反应逐步合成核苷酸,是主要途径。补救合成是利用体内游离的碱基或核苷合成核苷酸,是省能的、简单的反应过程,消耗的ATP少,节省一些氨基酸的消耗。
2.肝组织主要进行从头合成,而脑、骨髓、红细胞等只能进行补救合成。新生及年轻组织的内源性核苷酸从头合成比例大;而衰老组织及肝功能降低时,补救合成比例增大。
二、嘌呤核苷酸的合成
(一)从头合成
1.原料和部位
用同位素标记示综实验,证明生物体内能利用二氧化碳、甲酸盐、谷氨酰胺、天冬氨酸和甘氨酸作为合成嘌呤环的前体。嘌呤环的N-1来自天冬氨酸的氨基;N-3、N-9来自谷氨酰胺的酰胺基;C-2、C-8的来自甲酸盐;C-6来自CO2;C-4、C-5、N-7来自甘氨酸。
从头合成的器官主要有肝脏、小肠粘膜及胸腺,在胞液中进行
2.反应过程
嘌呤核苷酸合成的起始物是核糖-5-磷酸(来自戊糖磷酸途径),PRPP合成酶催化ATP的焦磷酸基团转移到核糖-5-磷酸的C-1,形成PRPP。从头合成的最初产物是次黄嘌呤核苷酸(IMP),其他各种嘌呤核苷酸都是IMP衍生而来。
(1)次黄嘌呤核苷酸的合成
由PRPP到IMP的合成过程有十步反应,全过程含酰胺键合成、脱水环化、酰基化、氨基化和裂解几个类型的反应:
第一阶段第5步反应形成咪唑五元环。先是PRPP转酰胺酶(关键酶)催化PRPP脱去焦磷酸并结合来自谷氨酰胺的氨基,生成5-磷酸核糖胺(PRA)。然后由甘氨酰胺核苷酸合成酶、甘氨酰胺核苷酸转甲酰基酶、甲酰甘氨脒核苷酸合成酶、氨基脒唑核苷酸合成酶依次将甘氨酸、一碳单位等基团连接上去形成5-氨基咪唑核苷酸(AIR)。
第二阶段的第10步反应形成嘧啶六元环。涉及的酶有氨基脒唑核苷酸羧化酶、氨基脒唑琥珀基氨甲酰核苷酸合成酶、腺苷酸基琥珀酸裂解酶、氨基脒唑氨甲酰核苷酸转甲酰基酶、IMP环化水解酶。
(2)AMP和GMP是IMP的衍生物
由IMP合成AMP的两步反应类似于IMP合成中的第(7)、(8)步反应。腺苷酸基琥珀酸合成酶与腺苷酸基琥珀酸裂解酶催化,消耗GTP,反应是可逆的。
IMP转换成GMP在IMP脱氢酶和GMP合成酶催化下完成,先氧化成XMP,再以谷氨酰胺上的酰胺基取代XMP中C-2上的氧,消耗ATP,反应是不可逆的。
(二)从头合成的调节和抗代谢物
1.调节位点:有3处。PRPP合成酶受AMP和GMP等的反馈抑制;谷氨酰胺-PRPP转酰胺酶是最主要的调控部位,它受到AMP和GMP等的变构抑制;由IMP转变成AMP或GMP时也受它们的反馈抑制。
2.抗代谢物
抗代谢物是一些与嘌呤、氨基酸或叶酸等结构类似的物质。它们主要以竞争性抑制等方式干扰或阻断嘌呤或嘧啶核苷酸的合成,进而阻止核酸及蛋白质的合成。肿瘤细胞的核酸及蛋白质合成十分旺盛,抗代谢物具有抗肿瘤作用。
嘌呤类似物有6-巯基嘌呤(6-MP)等,对急性白血病疗效显著。它竞争性抑制补救合成途径中的HGPRT活性,阻止了补救合成途径;而6-MP在体内经酶催化生成巯基嘌呤核苷酸,可阻断IMP转变成AMP及GMP,抑制核酸的合成。
氨基酸类似物有重氮丝氨酸及6-重氮-5-氧正亮氨酸等。它们的结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用。
(三)补救合成
外源的或降解产生的碱基和核苷,可被生物体重新利用。在哺乳动物的某些组织及微生物中广泛存在多种磷酸核糖转移酶,催化嘌呤碱和PRPP合成嘌呤核苷酸。腺嘌呤磷酸核糖转移酶催化腺嘌呤与PRPP形成AMP和PPi(PPi水解,使得反应不可逆)。次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)催化次黄嘌呤转变为IMP或鸟嘌呤转变为GMP,同时生成PPi(此酶的特性使低浓度的PRPP条件下,补救合成比从头合成优先发生)。
1964年,Lesch-Nyhan描述了一种严重的代谢病,其特征是智力迟钝,痉挛,表现出强制性的自残行为,甚至自毁容貌,称为莱-纳综合症或自毁容貌症。该病限于男性,是X染色体上HGPRT酶基因缺陷引起,缺乏HGPRT酶的细胞含高浓度的PRPP,从头合成的速率大大增加,过量的IMP降解的尿酸达到正常的6倍,体内过量的尿酸引起该症。
三、嘧啶核苷酸的合成
(一)从头合成
1. 原料和部位
嘧啶环的原料来自谷氨酰胺、天冬氨酸及CO2。主要在肝脏胞液中进行。
2. 合成过程
与嘌呤核苷酸从头合成不同的是先合成嘧啶环,再与PRPP反应形成最初产物尿嘧啶核苷酸(UMP),涉及6步反应。
(1)UMP的合成
氨甲酰磷酸合成酶(CPS-Ⅱ)催化谷氨酰胺、HCO3-和ATP生成氨甲酰磷酸(在真核生物中,有两种氨甲酰磷酸合成酶,线粒体中的是CPS-I,是首先发现的,生成的氨甲酰磷酸用于合成尿素;胞液中的CPS-Ⅱ,催化嘧啶合成的第一步关键反应)。
天冬氨酸转氨甲酰酶催化氨甲酰磷酸结合天冬氨酸生成氨甲酰天冬氨酸;二氢乳清酸酶将其环化;二氢乳清酸脱氢酶进一步氧化生成乳清酸;然后由乳清酸磷酸核糖转移酶催化乳清酸与PRPP反应生成乳清苷酸(OMP),乳清苷酸脱羧酶催化脱羧生成UMP。
(2)CTP是由UMP合成的
UMP转换成CTP涉及三步反应。尿苷酸激酶催化ATP的-磷酸转移给UMP形成UDP,核苷二磷酸激酶催化第二个ATP的-磷酸转移给UDP生成UTP,最后 CTP合成酶催化来自谷氨酰胺的酰胺氮转移至UTP的C-4,形成CTP。
(3)脱氧核苷酸的合成
在大多数生物中,ADP、GDP、CDP和UDP四种核苷二磷酸可在核苷二磷酸还原酶的催化下生成相应的脱氧核苷二磷酸dNDP。NADPH为合成的还原力,电子从NADPH向还原酶转移需要经过黄素蛋白和硫氧还蛋白的转递。
DNA合成需要的dTMP是由dUMP甲基化形成的。首先dUDP转换为dUMP(有多条途径,一条是核苷单磷酸激酶催化dUDP与ADP反应生成dUMP和ATP;另一条是dUDP先形成dUP,然后水解生成dUMP和PPi。dCMP经脱氨也可形成dUMP)。dUMP转换成dTMP的反应是由胸苷酸合成酶催化的, N5,N10CH2-FH4提供一碳单位后,形成二氢叶酸,经二氢叶酸还原酶催化又成为FH4,再在丝氨酸羟甲基转移酶催化下,结合丝氨酸生成N5,N10 CH2-FH4。
(二)从头合成的调节和抗代谢物
1.调节位点
原核生物和真核生物从头合成的酶不同,途径受到的调节也不同。
大肠杆菌嘧啶核苷酸的合成在三个控制点上受到终产物的反馈抑制。第一
个调节酶是氨甲酰磷酸合成酶,它受UMP反馈抑制。另两个调节酶是天冬氨酸转氨甲酰酶(主要调节位点)和CTP合成酶,它们受CTP的反馈抑制。
在哺乳动物,主要调节酶氨甲酰磷酸合成酶Ⅱ受UMP反馈抑制,PRPP和IMP可以激活该酶。
嘧啶与嘌呤两类核苷酸合成上有协调控制关系,PRPP合成酶是共同需要的酶,可同时接受这两类核苷酸的反馈调节。
2.抗代谢物
5-氟尿嘧啶(5-FU)的结构与胸腺嘧啶相似,在体内经补救合成途径转变为脱氧5-氟尿嘧啶核苷酸后,可抑制胸苷酸合成酶,阻断dUMP合成dTMP。
氨基蝶呤及氨甲蝶呤都是叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,结果阻止四氢叶酸的生成,从而抑制了它参于的各种一碳单位转移反应。氨甲蝶呤的主要作用点是dTMP合成中的一碳单位转移反应。
大多数正常细胞的分裂要比癌细胞慢得多,对氨甲蝶呤的敏感性低。
(三)补救合成
催化UMP补救合成的酶类有尿嘧啶磷酸核糖转移酶,尿苷磷酸化酶,尿苷激酶。催化的反应如下:
尿嘧啶 + PRPP UMP + PPi
尿嘧啶 + R-1-P 尿苷+ Pi
尿苷 + ATP UMP + ADP
查字典公务员考研为广大学子推出2017考研冲刺集训营、专业课一对一、乐学系列备考专题,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,查字典公务员考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!
推荐阅读》》》
2017考研百日冲刺各科复习笔记大汇总
王镜岩生物化学考研复习笔记
【王镜岩生物化学考研复习笔记之氨基酸合成代谢】相关文章:
★ 四川公务员考试—申论时事热点:刘洋为何能成首位女航天员?